
CSC4005 Project 2 Report
How to compile the programs

How to execute the programs

How does each parallel programming model do computation in
parallel

SIMD (Single Instruction, Multiple Data):

It performs a single operation on multiple data points simultaneously.

OpenMP (Open Multi-Processing):

Uses compiler directives to automatically parallelize code. It allows shared-memory parallelism, where
threads can be forked to perform tasks concurrently.

MPI (Message Passing Interface):

It uses a message-passing paradigm where individual processes communicate with each other by
explicitly sending and receiving messages.

What kinds of optimizations have you tried to speed up your
parallel program, and how does them work?

cd /path/to/project2

mkdir build && cd build

cmake ..

make -j4

cd /path/to/project2/build

sbatch ./../src/sbatch.sh

af://n0
af://n2
af://n5
af://n8
af://n16

Memory Locality:

Loop Ordering (Row-wise traversal for matrix1 and Row-wise traversal for matrix2):

The order of the loops is crucial for optimizing memory accesses. The outermost loop iterates
over the rows of matrix1 , the middle loop iterates over the columns of matrix1 (which
correspond to the rows of matrix2), and the innermost loop iterates over the columns of

matrix2 . The given algorithm accesses the elements of matrix1 in a row-wise manner and the

elements of matrix2 in a row-wise manner. This approach is optimized for row-major storage,
where consecutive elements of the same row are stored adjacently in memory. By accessing the
elements of matrix1 and matrix2 row-wise, the algorithm maximizes spatial locality because

consecutive memory accesses are likely to hit the same cache line, reducing the need to fetch
data from main memory frequently. This organization increases cache reuse for rows of
matrix1 and matrix2 .

Prefetching rows and columns:

Variables like result_i , matrix1_i , and matrix2_k are used to prefetch a whole row pointer.
This reduces the overhead of calculating the memory address for every single element in the
innermost loop. The inner loops can then use these pointers to access elements in a cache-
friendly manner. In addition, the compiler might proactively prefetch the memory regions
pointed to by the pointers, such as result_i , matrix1_i , and matrix2_k , into the cache. This
anticipatory memory loading, based on the predictability of access patterns, can significantly
reduce cache miss penalties and further boost the performance of the matrix multiplication.

Data Level Parallelism:

SIMD Vectorization:

SIMD instructions allow for the simultaneous processing of multiple data elements. In the
context of this matrix multiplication, each SIMD instruction operates on eight int elements at

once, as suggested by the use of __m256i , which is a 256-bit wide vector type from Intel's AVX2
instruction set.

Loading and Storing with SIMD:

The _mm256_load_si256 function is used to load eight consecutive int values from matrix2_k
into a SIMD vector. Similarly, the _mm256_store_si256 function stores the computed results

from the SIMD vectors back into the result matrix. These operations ensure efficient data

transfer between memory and the SIMD registers.

Parallel Arithmetic Operations:

The _mm256_set1_epi32 function is utilized to broadcast a single int value (in this case,

matrix1_ik) across all eight lanes of a SIMD vector. This facilitates the element-wise

multiplication with another vector from matrix2 . Operations such as _mm256_mullo_epi32 and
_mm256_add_epi32 perform element-wise multiplication and addition on two SIMD vectors,

respectively. These operations are parallelized, meaning that eight multiplications or additions
are performed in a single instruction.

af://n17
af://n27

__m256i prod_vec = _mm256_mullo_epi32(m1_vec, m2_vec); This instruction multiplies eight

pairs of 32-bit integers concurrently. Essentially, for each element in the vector m1_vec (eight
same element in m1_vec), it is multiplied with the corresponding element in the vector m2_vec .

For example, m1_vec is [a11, a11, a11, a11, a11, a11, a11, a11], m2_vec is [b11, b12, b13, b14,

b15, b16, b17, b18] and prod_vec is [a11 * b11, a11 * b12, a11 * b13, a11 * b14, a11 * b15, a11 *
b16, a11 * b17, a11 * b18]. Here, each value of a in m1_vec refers to an element from matrix1 ,

and each value of b in m2_vec refers to an element from matrix2 .

result_vecs[j / 8] = _mm256_add_epi32(result_vecs[j / 8], prod_vec); Once the

products are computed, they need to be accumulated into the result matrix. This instruction
takes the previously stored partial sum (from result_vecs[j / 8]) and adds the newly
computed products (from prod_vec) element-wise, again operating on eight integers at once.

For example, [c11, c12, c13, c14, c15, c16, c17, c18] = [a11 * b11, a11 * b12, a11 * b13, a11 * b14,
a11 * b15, a11 * b16, a11 * b17, a11 * b18] + [a12 * b21, a12 * b22, a12 * b23, a12 * b24, a12 *
b25, a12 * b26, a12 * b27, a12 * b28] + ... + [a1n * bn1, a1n * bn2, a1n * bn3, a1n * bn4, a1n *
bn5, a1n * bn6, a1n * bn7, a1n * bn8], where n = 1024 in the third test case.

Thread Level Parallelism:

Parallelization using OpenMP:

The most evident OpenMP optimization here is the use of the #pragma omp parallel for

directive. This directive instructs the compiler to create multiple threads to concurrently execute
iterations of the subsequent for-loop. By default, OpenMP creates as many threads as there are
cores available, ensuring that the CPU's processing power is used more effectively.

The matrix's rows are effectively divided among available threads, leading to a data
decomposition parallelism model where each thread works on its subset of the data. Each thread
calculates the result for one or more full rows of matrix1 . Since each thread works on
contiguous memory segments (rows), cache efficiency is enhanced as threads are less likely to
interfere with each other's cache lines.

Process Level Parallelism:

Domain Decomposition:

The matrices are decomposed by rows across different MPI processes. This means that each
process is responsible for computing a subset of the rows of the resulting matrix. The row
assignment logic (rows array) ensures that if the number of rows is not divisible evenly among
the processes, some processes will just compute an additional row. This is a simple yet effective
load balancing strategy.

Localized Fragment Storage:

For each process, memory is allocated only for the portion of the result that it is responsible for
computing. This is a significant memory-saving measure when compared to allocating memory
for the entire matrix on every process. Each process is solely concerned with the rows of the
result it's responsible for, leading to efficient memory utilization.

af://n45
af://n53

Methods
Matrices
1024x1024

Matrices
2048x2048

Naive (Optimized with -O2) 7059 ms 74141 ms

Memory Locality (Optimized with -O2) 761 ms 6355 ms

SIMD + Memory Locality (Optimized with -O2) 236 ms 2409 ms

OpenMP + SIMD + Memory Locality (1 core) 235 ms 2390 ms

OpenMP + SIMD + Memory Locality (2 cores) 176 ms 1680 ms

OpenMP + SIMD + Memory Locality (4 cores) 120 ms 1090 ms

OpenMP + SIMD + Memory Locality (8 cores) 61 ms 590 ms

OpenMP + SIMD + Memory Locality (16 cores) 50 ms 313 ms

OpenMP + SIMD + Memory Locality (32 cores) 41 ms 157 ms

MPI(1) + OpenMP(32) + SIMD + Memory
Locality

47 ms 248 ms

MPI(2) + OpenMP(16) + SIMD + Memory
Locality

47 ms 217 ms

MPI(4) + OpenMP(8) + SIMD + Memory Locality 33 ms 183 ms

MPI(8) + OpenMP(4) + SIMD + Memory Locality 34 ms 207 ms

MPI(16) + OpenMP(2) + SIMD + Memory
Locality

32 ms 252 ms

MPI(32) + OpenMP(1) + SIMD + Memory
Locality

55 ms 460 ms

Performance

af://n63

What have you found from the experiment results?

1. SIMD and Memory Locality: Adding SIMD (Single Instruction, Multiple Data) to the memory
locality optimization provides a further reduction in execution time. SIMD allows operations to be
performed on multiple data elements simultaneously, thus speeding up the computation.

af://n134

2. OpenMP Scaling: As cores are added using OpenMP, there is a consistent reduction in execution
time up to a point. The time decreases from using a single core to using 32 cores, but the
reduction is not strictly linear. There are diminishing returns as more cores are added, which is a
classic sign of Amdahl's law in parallel computing. The overhead of synchronization,
communication between threads, and contention can impact the speedup.

3. MPI and OpenMP: Combining MPI (Message Passing Interface) with OpenMP shows how
distributed memory (across MPI processes) and shared memory (within OpenMP threads)
parallelism can be mixed. The best time for 1024x1024 matrices is achieved with MPI(4) +
OpenMP(8), whereas for 2048x2048 matrices, the combination MPI(4) + OpenMP(8) and MPI(16)
+ OpenMP(2) give close optimal times. It's interesting to note that merely increasing MPI
processes and reducing OpenMP threads (or vice-versa) does not guarantee the best
performance. There's a balance to be struck.

4. Problem Size Matters: The benefits of parallelism are more pronounced for larger problems.
For the 2048x2048 matrix size, the speedup from using parallel techniques is more evident than
the 1024x1024 matrix size. This is a common trend in parallel computing: larger problems tend
to benefit more from parallel execution because the overhead of parallelization becomes a
smaller fraction of the total computation time.

5. Overhead of Too Much Parallelism: The execution time for MPI(32) + OpenMP(1) is higher than
some configurations with fewer cores or processes. This indicates that there's overhead in
managing too many MPI processes, which might outweigh the benefits of parallel execution for
this specific problem size and configuration.

Profiling Results & Analysis with perf

Naive

Naive Matrix Multiplication 1024*1024 (Optimized with -O2)

Output file to: /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_naive.txt

Multiplication Complete!

Execution Time: 7055 milliseconds

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/naive /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix5.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix6.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_naive.txt':

 20,893,112,073 cpu-cycles:u

 168,765 cache-misses:u

 8,388 page-faults:u

 7.539049580 seconds time elapsed

 7.244484000 seconds user

af://n147
af://n149

Memory Locality

 0.029935000 seconds sys

Naive Matrix Multiplication 2048*2048 (Optimized with -O2)

Output file to: /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_naive.txt

Multiplication Complete!

Execution Time: 65800 milliseconds

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/naive /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix7.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix8.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_naive.txt':

 191,808,053,017 cpu-cycles:u

 121,725,276 cache-misses:u

 43,633 page-faults:u

 66.985174537 seconds time elapsed

 66.349639000 seconds user

 0.095769000 seconds sys

Memory Locality Matrix Multiplication 1024*1024 (Optimized with -O2)

Output file to: /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_locality.txt

Multiplication Complete!

Execution Time: 761 milliseconds

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/locality /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix5.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix6.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_locality.txt':

 2,740,727,455 cpu-cycles:u

 170,921 cache-misses:u

 3,523 page-faults:u

 1.068078821 seconds time elapsed

 0.948745000 seconds user

 0.023917000 seconds sys

af://n152

SIMD + Memory Locality

Memory Locality Matrix Multiplication 2048*2048 (Optimized with -O2)

Output file to: /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_locality.txt

Multiplication Complete!

Execution Time: 6371 milliseconds

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/locality /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix7.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix8.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_locality.txt':

 20,470,969,120 cpu-cycles:u

 129,968,001 cache-misses:u

 31,031 page-faults:u

 7.565526881 seconds time elapsed

 7.084774000 seconds user

 0.114818000 seconds sys

SIMD + Memory Locality Matrix Multiplication 1024*1024 (Optimized with -O2)

Output file to: /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_simd.txt

Multiplication Complete!

Execution Time: 236 milliseconds

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/simd /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix5.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix6.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_simd.txt':

 1,130,691,965 cpu-cycles:u

 155,287 cache-misses:u

 3,523 page-faults:u

 0.539193091 seconds time elapsed

 0.428839000 seconds user

 0.017993000 seconds sys

SIMD + Memory Locality Matrix Multiplication 2048*2048 (Optimized with -O2)

Output file to: /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_simd.txt

Multiplication Complete!

af://n155

OpenMP + SIMD + Memory Locality (Extracted)

Execution Time: 2416 milliseconds

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/simd /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix7.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix8.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_simd.txt':

 8,117,666,455 cpu-cycles:u

 129,542,222 cache-misses:u

 24,093 page-faults:u

 3.602833149 seconds time elapsed

 3.156346000 seconds user

 0.088812000 seconds sys

OpenMP + SIMD + Memory Locality Matrix Multiplication 1024*1024 (Optimized with -O2)

Number of cores: 8

Output file to: /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_openmp_8.txt

Multiplication Complete!

Execution Time: 59 milliseconds

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/openmp 8 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix5.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix6.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_openmp_8.txt':

 1,566,186,109 cpu-cycles:u

 378,737 cache-misses:u

 3,598 page-faults:u

 0.400696385 seconds time elapsed

 0.698240000 seconds user

 0.028927000 seconds sys

Number of cores: 16

Output file to: /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_openmp_16.txt

Multiplication Complete!

Execution Time: 40 milliseconds

af://n158

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/openmp 16 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix5.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix6.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_openmp_16.txt':

 1,806,478,309 cpu-cycles:u

 422,464 cache-misses:u

 3,624 page-faults:u

 0.375367338 seconds time elapsed

 0.883176000 seconds user

 0.023188000 seconds sys

Number of cores: 32

Output file to: /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_openmp_32.txt

Multiplication Complete!

Execution Time: 38 milliseconds

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/openmp 32 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix5.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix6.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_openmp_32.txt':

 2,660,138,918 cpu-cycles:u

 375,650 cache-misses:u

 3,676 page-faults:u

 0.475329131 seconds time elapsed

 1.348020000 seconds user

 0.055343000 seconds sys

OpenMP + SIMD + Memory Locality Matrix Multiplication 2048*2048 (Optimized with -O2)

Number of cores: 8

Output file to: /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_openmp_8.txt

Multiplication Complete!

Execution Time: 504 milliseconds

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/openmp 8 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix7.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix8.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_openmp_8.txt':

 11,298,040,988 cpu-cycles:u

 70,322,089 cache-misses:u

 12,923 page-faults:u

 1.723913583 seconds time elapsed

 4.489249000 seconds user

 0.087809000 seconds sys

Number of cores: 16

Output file to: /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_openmp_16.txt

Multiplication Complete!

Execution Time: 287 milliseconds

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/openmp 16 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix7.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix8.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_openmp_16.txt':

 12,116,049,526 cpu-cycles:u

 54,499,531 cache-misses:u

 12,957 page-faults:u

 1.513055145 seconds time elapsed

 4.960884000 seconds user

 0.089925000 seconds sys

Number of cores: 32

Output file to: /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_openmp_32.txt

Multiplication Complete!

Execution Time: 187 milliseconds

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/openmp 32 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix7.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix8.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_openmp_32.txt':

 11,182,466,326 cpu-cycles:u

 34,209,405 cache-misses:u

 13,025 page-faults:u

 1.422266578 seconds time elapsed

MPI + OpenMP + SIMD + Memory Locality (Extracted)

 4.883062000 seconds user

 0.120557000 seconds sys

MPI + OpenMP + SIMD + Memory Locality Matrix Multiplication 1024*1024 (Optimized

with -O2)

Number of Processes: 2, Number of Threads: 16

Output file to: /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_mpi_2.txt

Multiplication Complete!

Execution Time: 52 milliseconds

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/mpi 16 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix5.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix6.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_mpi_2.txt':

 1,902,768,438 cpu-cycles:u

 207,487 cache-misses:u

 4,571 page-faults:u

 0.599289252 seconds time elapsed

 0.867701000 seconds user

 0.036733000 seconds sys

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/mpi 16 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix5.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix6.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_mpi_2.txt':

 1,413,110,620 cpu-cycles:u

 247,240 cache-misses:u

 5,711 page-faults:u

 0.425505079 seconds time elapsed

 0.742175000 seconds user

 0.053651000 seconds sys

Number of Processes: 4, Number of Threads: 8

af://n161

Output file to: /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_mpi_4.txt

Multiplication Complete!

Execution Time: 47 milliseconds

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/mpi 8 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix5.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix6.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_mpi_4.txt':

 1,231,652,963 cpu-cycles:u

 209,791 cache-misses:u

 4,293 page-faults:u

 0.852781137 seconds time elapsed

 0.550674000 seconds user

 0.032980000 seconds sys

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/mpi 8 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix5.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix6.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_mpi_4.txt':

 1,237,858,604 cpu-cycles:u

 193,752 cache-misses:u

 4,294 page-faults:u

 0.406346639 seconds time elapsed

 0.558972000 seconds user

 0.025859000 seconds sys

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/mpi 8 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix5.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix6.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_mpi_4.txt':

 1,318,926,801 cpu-cycles:u

 555,241 cache-misses:u

 3,779 page-faults:u

 0.799618686 seconds time elapsed

 0.557578000 seconds user

 0.026027000 seconds sys

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/mpi 8 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix5.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix6.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_mpi_4.txt':

 973,197,716 cpu-cycles:u

 325,524 cache-misses:u

 6,180 page-faults:u

 0.418305016 seconds time elapsed

 0.466437000 seconds user

 0.038786000 seconds sys

MPI + OpenMP + SIMD + Memory Locality Matrix Multiplication 2048*2048 (Optimized

with -O2)

Number of Processes: 2, Number of Threads: 16

Output file to: /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_mpi_2.txt

Multiplication Complete!

Execution Time: 221 milliseconds

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/mpi 16 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix7.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix8.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_mpi_2.txt':

 8,897,452,242 cpu-cycles:u

 28,612,976 cache-misses:u

 12,416 page-faults:u

 1.850219626 seconds time elapsed

 3.616515000 seconds user

 0.101901000 seconds sys

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/mpi 16 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix7.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix8.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_mpi_2.txt':

 7,176,297,461 cpu-cycles:u

 15,226,559 cache-misses:u

 16,662 page-faults:u

 1.674257723 seconds time elapsed

 2.978515000 seconds user

 0.109982000 seconds sys

Number of Processes: 4, Number of Threads: 8

Output file to: /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_mpi_4.txt

Multiplication Complete!

Execution Time: 261 milliseconds

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/mpi 8 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix7.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix8.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_mpi_4.txt':

 6,179,767,150 cpu-cycles:u

 23,061,086 cache-misses:u

 11,353 page-faults:u

 1.969581281 seconds time elapsed

 2.413662000 seconds user

 0.071930000 seconds sys

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/mpi 8 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix7.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix8.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_mpi_4.txt':

 5,979,462,972 cpu-cycles:u

 57,633,822 cache-misses:u

 11,344 page-faults:u

 1.913728396 seconds time elapsed

 2.319228000 seconds user

 0.085897000 seconds sys

Memory Locality

1. Page Faults: There's a significant reduction in page faults when optimizing for memory locality.
This indicates that the optimization is accessing memory in a way that results in fewer page
swaps between RAM and secondary storage (like a hard drive or SSD), which can be a costly
operation in terms of time.

2. Cache Misses: Interestingly, for the 1024x1024 matrix, cache misses increased slightly with
memory locality optimization. However, this did not adversely affect the execution time. For the
2048x2048 matrix, cache misses also increased with memory locality optimization. This suggests
that while the memory locality optimization improved the access pattern for matrix elements, it
didn't necessarily reduce cache misses for this computation. It's also possible that while there
were more cache misses, they might have been less costly due to improved memory access
patterns.

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/mpi 8 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix7.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix8.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_mpi_4.txt':

 6,225,134,153 cpu-cycles:u

 25,348,347 cache-misses:u

 11,354 page-faults:u

 1.498649092 seconds time elapsed

 2.421724000 seconds user

 0.090727000 seconds sys

 Performance counter stats for '/nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/src/mpi 8 /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix7.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../matrices/matrix8.txt /nfsmnt/120090638/CSC4005-

2023Fall/project2/build/../build/result_mpi_4.txt':

 5,227,020,518 cpu-cycles:u

 38,790,384 cache-misses:u

 17,245 page-faults:u

 1.511520547 seconds time elapsed

 2.088433000 seconds user

 0.099638000 seconds sys

af://n164

3. User vs. System Time: The 'user' time, which represents the time the CPU spends on executing
user-level applications, is dominant in both naive and optimized cases. The 'sys' time, which
denotes the time the CPU spends on executing kernel or system-level operations, remains
minimal. This indicates that most of the computation time is spent on the matrix multiplication
operation itself, rather than on system overheads.

SIMD + Memory Locality

1. Cache Misses: With the introduction of SIMD, cache misses decreased slightly for both matrix
sizes. This suggests that SIMD operations might be efficiently utilizing the CPU cache, thereby
reducing the number of times the CPU has to fetch data from main memory.

2. Page Faults: The page faults further decreased with SIMD optimization for the 2048x2048 matrix
but remained the same for the 1024x1024 matrix. This further reduction for the larger matrix
size suggests better memory management with the combination of SIMD and memory locality
optimizations.

3. User vs. System Time: As with the previous results, the 'user' time dominates the computation,
indicating that the matrix multiplication operation itself takes up most of the computation time.
The system time remains relatively minimal in both scenarios.

OpenMP + SIMD + Memory Locality

Cache Misses: With the integration of OpenMP and increasing cores, cache misses increase for
the 1024x1024 matrix (from 8 cores to 16 cores) but significantly decrease for the 2048x2048
matrix. This suggests that for larger matrices, the parallelism with more cores leads to more
efficient cache utilization.

Page Faults: For both matrices, the OpenMP method, irrespective of the number of cores, shows
a slight increase in page faults. This might hint at the additional overhead of managing multiple
threads concurrently.

User vs. System Time: As with the previous results, the 'user' time dominates the computation,
indicating that the matrix multiplication operation itself takes up most of the computation time.
The system time remains relatively minimal in both scenarios.

For OpenMP + SIMD + Memory Locality of matrix size 1024x1024, it appears that as the number
of cores increases, the cache misses remain relatively stable, and there's not a significant
reduction in cache misses or page faults. However, the execution time decreases with more
cores, indicating improved parallelism. Here, for the larger matrix size of 2048x2048, we observe
a significant reduction in cache misses as the number of cores increases. This suggests that the
optimizations in the code are more effective for larger matrices and parallelism helps reduce
cache misses.

af://n173
af://n182

MPI + OpenMP + SIMD + Memory Locality

1. Matrix Size 1024x1024 with 2 Processes and 16 Threads:

Cache Misses: Approximately 207,487

Page Faults: Approximately 4,571

Execution Time: 52 milliseconds

This configuration demonstrates good performance with relatively low cache misses and page
faults. The use of multiple threads per process and MPI parallelism contributes to the overall
efficiency.

2. Matrix Size 1024x1024 with 4 Processes and 8 Threads:

Cache Misses: Approximately 209,791

Page Faults: Approximately 4,293

Execution Time: 47 milliseconds

This configuration also shows low cache misses and page faults. Distributing the computation
across more processes while still utilizing multiple threads within each process seems to be
effective.

3. Matrix Size 2048x2048 with 2 Processes and 16 Threads:

Cache Misses: Approximately 28,612,976

Page Faults: Approximately 12,416

Execution Time: 221 milliseconds

The larger matrix size results in significantly higher cache misses. However, the execution time is
reasonable, indicating that the optimizations are still effective.

4. Matrix Size 2048x2048 with 4 Processes and 8 Threads:

Cache Misses: Approximately 23,061,086

Page Faults: Approximately 11,353

Execution Time: 261 milliseconds

Similar to the previous case, the larger matrix size leads to more cache misses. However, the
execution time remains reasonable.

Overall, the optimizations in the code appear to be effective, resulting in low cache misses and page
faults even for larger matrix sizes. The combination of MPI for distributed computing and OpenMP for
intra-process parallelism, along with SIMD and memory locality optimizations, seems to be well-suited
for this matrix multiplication task.

af://n193

	CSC4005 Project 2 Report
	How to compile the programs
	How to execute the programs
	How does each parallel programming model do computation in parallel
	What kinds of optimizations have you tried to speed up your parallel program, and how does them work?
	Memory Locality:
	Data Level Parallelism:
	Thread Level Parallelism:
	Process Level Parallelism:

	Performance
	What have you found from the experiment results?
	Profiling Results & Analysis with perf
	Naive
	Memory Locality
	SIMD + Memory Locality
	OpenMP + SIMD + Memory Locality (Extracted)
	MPI + OpenMP + SIMD + Memory Locality (Extracted)
	Memory Locality
	SIMD + Memory Locality
	OpenMP + SIMD + Memory Locality
	MPI + OpenMP + SIMD + Memory Locality

